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Direct laser writing technique by two-photon polymerization (DLW-2PP) allows to optimize the manufacturing of diffractive 
phase elements (DPE) using unequal phase steps. Optimization addresses the designing stage, being adapted to the specific 
characteristics of the DPE. The algorithm is implemented in Python language and contains an extension consisting in two 
iterative loops: a local one in the phase space, and a global loop in the object space. The method is tested in the cases of 
relevant DPEs. The results confirm the advantage of phase mapping with unequal steps compared to equal steps.  
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1. Introduction  
 

Various techniques are used to cut the costs by 

reducing the working time and the volumes of processed 

materials during fabrication processes of diffractive devices 

[1]: diffractive elements in the case of diffraction gratings 

[2], diffractive lenses [3], or holograms encoding optical 

vortices [4] designed to produce desired field distributions 

for communication issues [5], optical trapping [6], or 

absorptive structures for solar cells [7]. Getting the desired 

field distribution with diffractive maps is hindered by at 

least two practical limitations: i/ retaining for reconstruction 

either only the phase or the amplitude information, and ii/ 

approximation with a limited number of levels of the phase 

shifts (or of the gray levels), often only two in the case of 

mask technology. 

Since DLW-2PP technology is more versatile, the 

paper presents a method to improve DPE manufacturing in 

the designing stage using the approximation with unequal 

phase steps, here in four steps. The improvement consists in 

an additional loop that can further minimize the distance 

between the simulated multi-level phase map and its four 

level approximated version. The result is depending on the 

depths of phase steps as well as on their distribution onto 

the polymer surface such that the approximation with 

unequal phase steps is adapted to the particular DPE 

subjected to fabrication.  

After the introductory section, Sec. 2 is briefly 

explaining the method, in Sec. 3 are discussed the results, 

and in Sec. 4 are presented the concluding remarks. 

 
 
 
 
 
 

2. Method 
 

2.1. The problem 

 

The designing of large categories of DPEs follows a 

spatial light modulator (SLM) assisted, iterative processes 

of the type illustrated in a simplified version in Fig.1, where 

O(x,y) is the optical intensity in the object plane (x,y) which 

optimally reproduces the desired object O(x,y) with a quite 

large number of approximating phase levels (in most cases 

256 equally spaced levels according to SLM resolution). 

Depending on the particular configuration of the desired 

field distribution, the optimization loop uses various 

iterated algorithms to extract the appropriate phase 

distribution (u,v) that minimize a measure of distance 

type between O(x,y) and O(x,y) like the versatile 

Gerchberg-Saxton algorithm [8, 9], or more sophisticated 

approaches when the distribution along z-axis is required as 

input data [10]. Here we assume intensity distribution is 

localized in the diffraction plane such that the problem is 

two-dimensional. For a MN object matrix the optimization 

accounts for minimization of the root-mean-square distance 

(RMSD) [11]: 

 

RMSDobject=√
1

𝑀𝑁
∑ |𝑂(𝑥, 𝑦) − 𝑂(𝑥, 𝑦)|2

𝑥,𝑦   min. (1) 

 

Hereafter „min” is in the sense of the lowest threshold 

value when the software algorithms stop and deliver the 

output data sets, not in the sense of a mathematical local 

minimum.  
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Whatever the algorithm, the DPEs fabrication 

techniques do not support but much smaller numbers of 

approximating phase steps (u,v) compared to the multi-

leveled SLM optimum, i.e. (u,v)(u,v), thus distorting 

once more the reconstructed beam from the desired pattern 

O(x,y)O(x,y).  

Fortunately, for the same number of approximating 

levels the DLW-2PP technology allows for better 

approximations by dividing the phase range [0,2) in 

unequal steps instead of the classical uniform partition. 

Similarly to Eq. (1) the RDMS between the IJ matrices 

(u,v) and (u,v) is:     

RMSDphase=√
1

𝐼𝐽
∑ |(𝑢, 𝑣) − (𝑢, 𝑣)|2

𝑢,𝑣  .      (2) 

 

 
 

Fig.1. Classical optimization loop based on RMSDobject criterion 

 

2.2. Unequal vs. equal steps approximation  

 

Considering the algorithm is running with 256 levels in 

the phase space (consistent with the accuracy of the SLM 

used in our experimental simulations), for any histogram 

H() of a particular phase map (u,v), a four levels, equal 

steps approximation means to divide the numeric phase 

range n[0, 255] in four equally stepped levels {0, 

 Level 1 is 0 if n<64, level 2 is 64 if 

64n<128, level 3 is 128 if 128n<192, and level 4 is 192 

if 192n<255. The result is a four level histogram H(,E) 

of an also four steps approximating phase map ,E(𝑢, 𝑣), 

as shown in Fig. 2.  

 

 
 

(a)                                             (b) 

 

Fig. 2. (a) Approximation with equal steps: the principle, and (b) example of application on an arbitrary histogram (the 

histograms shown in Figs.(2), (3) are for explanatory purposes only) 

 

Approximation in four unequal steps {0, 

means to find and such that 

RDMSphasemin according to Eq. (2). Level 1 takes zero 

value if n<, level 2 is  ifn<, level 3 is  ifn<, 
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and level 4 is  ifn<255. The result is also a four-

levels approximating phase map but with unequal steps 

,U (Fig. 3).  

This kind of approximation adapts the partition of the 

interval [0, 255] to the particular histogram subjected to 

analysis. Moreover, since level 1 remains nailed down to 

zero it preserves the biasing to lower levels thus reducing 

the processing time. 

 

 

  
 

(a)                                        (b) 

 

Fig. 3. (a) Approximation with unequal steps: the principle, and (b) the example of application on the same arbitrary 

histogram as in Fig. 2 

 

 

The algorithm is implemented using the capabilities of 

Python software [12] where Eq. (2) is implemented in the 

equivalent form: 

 

 

 

 

 

 RMSDphase=√
∑ 𝐻(𝑛)·(𝑛−0)2

0 +∑ 𝐻(𝑛)·(𝑛−)2

+1 +∑ 𝐻(𝑛)·(𝑛−)2+
+1 +∑ 𝐻(𝑛)·(𝑛−−)2255

++1

∑ 𝐻(𝑛)255
0

 . (3) 

 

In Fig. 4 are shown the approximations with four equal 

and unequal steps of a holographic phase map with 256 

levels (the phase shifts were converted into gray levels).   

 

    
 

(a)     (b)  (c) 

Fig. 4. (a) Holographic phase map with 256 levels, (b) its 

approximations with four equal steps, and (c) with four 

unequal steps 

 

2.3. Local optimization loop 

 

Differing from the classical procedures where the 

approximation with equal phase steps is uniformly rounding 

the phase map ,E(u,v)(u,v) and consequently 

O,E(u,v)O(u,v), here is introduced an additional, local 

optimization loop using the approximation with unequally 

phase steps ,U(u,v)(u,v), the indices E and U 

addressing the versions with equal and respectively unequal 

steps, see Fig. 5.   
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Fig. 5. Local optimization loop based on RMSDphase criterion and global loop based on RMSDobject criterion  

 

The additional approximation is supported by the 

assumption that despite the four steps truncation is 

worsening the 256-levels optimum, the process still remain 

inside the convergence area and the approximated object 

can still approach the desired object as the phase map is 

tracking the optimum phase map by unequal steps: 

 

∆,U(𝑢, 𝑣)(𝑢, 𝑣) S  𝑂∆(𝑥, 𝑦)𝑂(𝑥, 𝑦). (4) 

In Eq.(4) the symbol S  means „resulting statistically” not 

uniformly. 

Although the relationship between convergences in 

object space and phase space remain a complex problem in 

the field of iterative algorithms [13], the additional iterative 

local loop based on unequal approximation can still 

minimize the RMSDs. More specifically:  

 

 

√
1

𝐼𝐽
∑ |,U(𝑢, 𝑣) − (𝑢, 𝑣)|

2
𝑢,𝑣  < √

1

𝐼𝐽
∑ |,E(𝑢, 𝑣) − (𝑢, 𝑣)|

2
𝑢,𝑣  S    

  

S  √
1

𝑀𝑁
∑ |𝑂,U(𝑥, 𝑦) − 𝑂(𝑥, 𝑦)|

2
𝑥,𝑦  < √

1

𝑀𝑁
∑ |𝑂,E(𝑥, 𝑦) − 𝑂(𝑥, 𝑦)|

2
𝑥,𝑦   (5) 

 

The assumption stated by Eqs.(4), (5) has to be verified 

on the final results. 

 
 
3. Results 
 

3.1. Simulated phase distributions 

 

The way of how the unequal steps approximation 

adapts to several test histograms with 42000 elements each 

is analyzed below. The representatives are histograms with 

uniformly distributed phase levels (type I), dominant low 

phase levels (type II), dominant high levels (type III), and 

dominant middle levels (type IV).  

For type I (Fig. 6) the equal and unequal 

approximations coincide, i.e. the local loop outputs =64, 

=128 and the method is not effective. 
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(a) 

 

  
 

(b)                                              (c) 

 

Fig. 6. (a) Uniformly distributed phase shifts: the associated histogram H(), (b) the approximated version with four equal 

steps H(,E), and (c) the approximated version with four unequal steps H(,U) where =64, =128 

 

Type II and type III may result from nonlinear 

transforms, e.g. exponential or logarithmic that change the 

phase distribution across the polymer surface toward values 

which can eventually reduce the material consumption or 

the processing time. For example, to increase the area 

covered by the pixels with low phase shifts, one can apply 

an exponential law o(𝑢, 𝑣) = 𝑎(𝑒
i(𝑢,𝑣)

𝑏 − 1) , where 

o(𝑢, 𝑣) is the value of the phase level attributed to the 

pixel of coordinates (u,v) in the output matrix, i(𝑢, 𝑣) is 

the value of the phase level attributed to the pixel of 

coordinates (u,v) in the input matrix, a and b are regulatory 

parameters such that the interval [0,2) be mapped onto 

itself [1]. The histogram shifts accordingly toward lower 

levels (Fig. 7).  
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(a) 

 

  
(b)                                                                        (c) 

 

Fig. 7. (a) Dominant low phase shifts: tthe histogram H(), (b) the approximated version with equal steps H(,,E), and (c) the 

approximated version with unequal steps H(,,U) where =48, =77 

 

 

Conversely, when applying a logarithm of the form 

o(𝑢, 𝑣) = 𝑐 log( 𝑑i(𝑢, 𝑣) + 1) where c and d are fitting 

constants, the higher phase shifts are enhanced and the 

histogram shifts to the right (Fig. 8). 
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(a) 

 

 
 

(b)                                                            (c) 

                                      

Fig. 8. (a) Dominant high phase shifts: the histogram H(), (b) the approximated version with equal steps H(,,E) (b), and (c) 

the approximated version with unequal steps H(,,U) where =69, =142 

 

The combination of the previous rules gives a version 

with enhanced middle levels as shown in Fig. 9. 



160                             E. I. Scarlat, M. Mihailescu, N. Mihale, I. A. Paun, B. S. Calin, C. R. Luculescu, D. Trancă 

 

 
(a) 

  
 

(b)                                                  (c)  

 

Fig. 9. (a) Dominant middle phase shifts: the histogram H(), (b) the approximated version with equal steps H(,,E), and (c) 

the approximated version with unequal steps H(,,U) where =62, =137 

 

At least for single-peaked histograms considered here, 

one should remark the approximation with unequal steps 

has two visible effects upon H(,,U) as compared to H(,,E): 

i/ the dragging  and  toward the peak of the histogram 

H(), and ii/ the reducing the differences among the counts.   

 

3.2. Validation on real holographic phase maps 

The method was experimentally run on three 

holographic phase maps whose objects are sets of vortices 

denoted Object 1, Object 2, and Object 3 (Fig.10).  

The holograms are designed by simulating the 

interfrence between tilted plane waves and helical 

Laguerre-Gauss modes [14, 15].  
 

  
(a)  (b)     (c) 

   
(d)   (e)     (f) 

 

Fig. 10. (a) Object 1, (b) Object 2, (c) Object 3, and (d), 

(e), (f) their corresponding 256-levels holograms  
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The algorithm was run along the local loop for all three 

holograms by minimizing RMSDphase with respect to the 

reference 256-levels phase map . They are computed in 

normalized units according to Eq. (3). In Fig. 11 are given 

the results of the approximations with four equal steps 

(shadowed zone), and with four unequal steps (no shadow) 

as well as the corresponding values of  and  in each case. 

 

 
 

Fig. 11. RMSDphase in the cases of Object 1 (=70, 

=143), Object 2 (=65, =120), and Object 3 (=69, 

=137) 

 

To verify Eqs. (4), (5), for each object was computed 

RMSDobject along the global loop with respect to the 

reference object O. All reconstructed objects were 

considered in the active area of the first diffracted order. 

The results are given in Fig. 12. 

 

 
 

Fig. 12. RMSDobject in the cases of Object 1, Object 2, 

and Object 3 
 

In spite of the very small improvement in the case of 

Object 3, the approximations with unequal steps is reducing 

RMSDobject in all investigated cases, therefore the 

assumptions stated by Eqs. (4) and (5) are valid and the 

algorithm remains inside the convergence radius. 

 

3.3. DPE fabrication by DLW-2PP 

 

DPEs of millimeter sizes (1200×1200 pixels, 

2m/pixel) were subsequently fabricated with DLW-2PP 

technology (Photonic Professional Nanoscribe GMBH 

[16]). We followed the standard typical processing 

methodology consisting in substrate cleaning, drop-casting 

of the photo-polymerizable material IPL-780 on glass 

substrate, laser irradiation, and sample development. As 

substrates we used 170µm thick glass slides (BK7) cleaned 

with isopropanol. The photo-polymerizable materials were 

irradiated with 80MHz, 120fs laser pulses at λ=780nm 

central wavelength. The positions of both laser focus and 

sample are controlled (the sample on XY-axes, the beam 

focus on Z-axis). For higher resolution processing we used 

three synchronized piezoelectric stages. The heights of 

DPEs are in micrometer range allowing for steps of 

hundreds of nanometers (4nm vertical position precision). 

After laser writing the DPEs require no other processing 

stages except the immersion in PGMEA developer solution 

for 3 minutes to wash away the non-polymerized material. 

 

 

  
 

(a) 

 
 

(b) 

Fig. 13. (a) SEM images for DLW-2PP DPE 

approximated with four unequal steps, and (b) detail 

 

The geometric heights of steps were computed after the 

value of the refractive index has been determined using 

scattering Scanning Near-Field Optical Microscopy 

measurements as described in [17, 18]. In the case of the 

polymer IPL-780 used here the value of the refractive index 

was 1.523±0.002 at working wavelength of 632.8nm. SEM 
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images of the approximated DPE in four unequal steps 

corresponding to Object 2 are presented in Fig. 13. 

The details are comparable to those reported in [19]. 

The diffracted beams after DLW-2PP DPEs with four 

unequal steps are shown in Fig. 14. 

 

 
(a)     (b)      (c) 

 

Fig. 14. Diffracted beams through DPEs with four 

unequal steps: (a) Object 1, (b) Object 2, and  

(c) Object 3 

 
In the case of Object 2 the manufacturing time for DPE 

with 4 equal steps was 24 hours while for the DPE with 4 

unequal steps it came down to 16 hours. The functional 

performances of the corresponding diffracted images were 

evaluated in terms of contrast 

 

𝐶 =
𝐼max−𝐼min

𝐼max+𝐼min
,                               (6) 

 

where maximum and minimum intensities Imax and Imin were 

measured in the first diffraction order. In the case of DPE 

with 4 unequal steps the contrast was 88.82±1.51% 

compared to 85.36±1.23% in the case of DPE with 4 equal 

steps.  

 
 
4. Conclusions 
 

A method to optimize the design of the diffractive 

phase elements based on unequal steps approximation with 

consequences on reducing the fabrication time and on 

slightly improving the optical performances of the 

diffracted images is presented. For the same number of 

digitized steps, the results are evidencing the advantages of 

approximation with unequal steps versus the equal ones at 

least in the cases we have chosen here. A local iterative loop 

based on evaluation of the root mean square distance in the 

phase plane statistically improves the characteristics of the 

reconstructed object in terms of intensity distribution. The 

method is less effective in the case of holograms exhibiting 

phase shifts close to uniformly shaped distributions. The 

method is an acceptable compromise between preserving 

relevant micro-relief details and accurate image 

reconstruction under the constraint of limited number of 

imprinting steps. Practical application of the method is 

facilitated by the versatility of direct laser writing with two-

photon polymerization technology. 
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